

THE BEST OF
THE
Teaching
PROFESSOR
CONFERENCE

2025

June 6-8, 2025 | Washington D.C.

Magna Publications

800-433-0499 (US & Canada) 608-246-3590 (Int'l)

support@magnapubs.com | www.magnapubs.com

©2025 Magna Publications Inc.

All rights reserved.

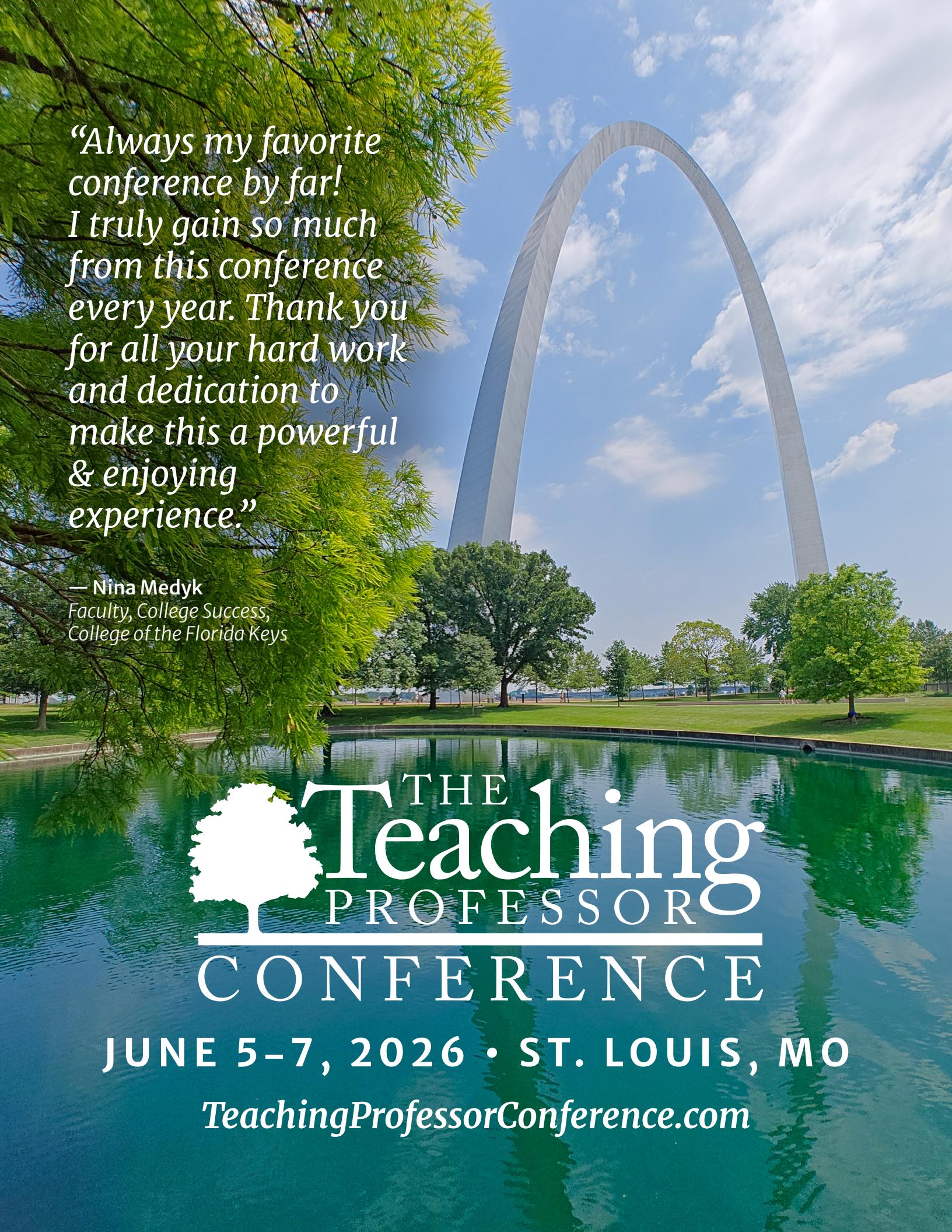
It is unlawful to duplicate this publication in any manner
without written consent from Magna.

Contents

**1 The Critical Thinking Gap:
Why Good Intentions Aren't Enough**
Michelle D. Miller

**6 The DEI Debacle:
How University Presidents Are Repeating Their Past Mistakes**
Nimisha Barton

**10 Teaching for Transformation:
Strategies to Help Students See the World Differently**
Michelle Blank Rentz


**14 Cocreating Agile Academic Integrity Guiding Principles
for AI with Equity**
Hoda Mostafa, Maha Bali, and Yasser Atef Tamer

**19 Rethinking the Flipped Classroom:
Beyond Content Delivery**
Rachel Glazener

**24 Timeless Teaching, Modern Challenges:
Ensuring Learning in an AI World**
Jeremy A. Rentz

30 Helping Students Build a Life in the Age of AI
Jason Gulya

33 About the Contributors

A photograph of the Gateway Arch in St. Louis, Missouri, viewed from across a reflecting pool. The arch is a prominent white steel arch, and the water in the foreground reflects its shape and the surrounding green trees. The sky is blue with some white clouds.

“Always my favorite conference by far! I truly gain so much from this conference every year. Thank you for all your hard work and dedication to make this a powerful & enjoyable experience.”

— Nina Medyk
Faculty, College Success,
College of the Florida Keys

THE
Teaching
PROFESSOR

CONFERENCE

JUNE 5-7, 2026 • ST. LOUIS, MO

TeachingProfessorConference.com

The Critical Thinking Gap: Why Good Intentions Aren't Enough

Michelle D. Miller

Ask any group of faculty whether they include critical thinking on their course learning objectives, and nearly every person will say that they do. This is not just because faculty were handed down a mandate or made to hew to some university policy. My many conversations with faculty across disciplines have revealed a widespread and fully authentic desire to ensure that students develop the willingness and ability to engage in critical reasoning. Go a few more levels up the campus organizational chart, and you'll find administrators eagerly adding critical thinking to mission statements, long-range plans, and visioning documents. Finally, outside academia, critical thinking routinely tops surveys of the skills industry leaders are looking for in their new hires (Pearson, 2018) and according to some education experts, will only become more important as AI makes routine job skills obsolete (Dumitru & Halpern, 2023).

This is a rare point of agreement across faculty, leadership, and industry: Critical thinking skills are one of the most important abilities that students can attain while earning a college degree. They could even be *the* most important thing, especially given the ever-increasing cognitive sophistication needed to navigate the epic amounts of information, and misinformation, that surround modern human beings (Dwyer, 2023, 2017).

We all want critical thinking. But nowhere is the gap between intention and outcome wider than with this one instructional goal.

This is not because faculty aren't following through or because leadership isn't supportive. Nor is it because generative AI has eaten away at critical thinking abilities—a viral headline that currently lacks substantive support (Miller, 2025). It's

because critical thinking is incredibly difficult for the human mind to engage in and thus to learn how to do consistently. No wonder, then, that educational interventions to improve critical thinking have yielded such mixed results (Huber & Kuncel, 2016; Niu et al., 2013), raising continued concern about whether higher education at large is doing an adequate job of cultivating it (Arum & Roksa, 2011).

The barriers to developing critical thinking ability are numerous, and scholars have been cataloguing them for decades. Critical thinking is a two-part problem involving both the skill itself (being *able* to think critically) and dispositional factors (being *willing* to do so in a variety of settings and situations; Halpern, 1998; Huber & Kuncel, 2016; Willingham, 2008)—a reality that complicates and extends the challenge of teaching people how to do it. Then there is the simple fact that critical thinking demands extra cognitive effort. Energy-conserving creatures that we are, it's no wonder that when given the choice to exert it, we prefer to go almost any other route, such as following our emotions, relying on preexisting biases and beliefs, or going along with whatever everyone else seems to think. In my book *Minds Online: Teaching Effectively with Technology*, I compared critical thinking (and other kinds of demanding, formal reasoning) to walking on your hands—something that people can do with practice and determination but that will rarely be the natural or default approach.

There are a few other challenges that relate specifically to *teaching* critical thinking. First is the difficulty of nailing down exactly what it is. I come down on the side of many other experts who argue that critical thinking can easily be defined only in terms of what it looks like within a given discipline; as an abstract, context-free cognitive capacity, it might not even exist (Willingham, 2008). Thus, faculty have to think through exactly what constitutes critical thinking in their courses in order to have any kind of concrete goals to aim for. Furthermore, teaching critical thinking can't be separated from active learning, a practice that still presents challenges to some faculty as they strive to balance content presentation with other ways of engaging students (Miller & Metz, 2014). Much like the intention-outcome gap with critical thinking, nowhere is there a more dramatic disparity than between what students gain from watching someone else discuss a skill and what they gain by practicing that skill themselves. And so faculty who lack the time, capacity, or inclination to emphasize active learning are even less likely to succeed.

In sum, we faculty who are serious about teaching critical thinking can use all the help we can get. While no one has (yet) devised a quick, guaranteed method for getting there, there are a few promising avenues emerging in the applied research literature. One that appears frequently is problem-based learning (PBL). In brief, PBL involves presenting students with challenging, open-ended, realistic problems to work through. PBL activities are typically done in groups, using knowledge that's connected to a specific course or discipline (for examples, check out the [Problem Library](#) at the University of Delaware's PBL Clearinghouse). Researchers have documented a variety of benefits that come from this admittedly labor-intensive approach, but in particular, they note that it effectively reinforces critical thinking (Tiruneh et al., 2014). This impact is especially powerful when the exercises are constructed to highlight some critical-thinking-specific design features. These include explicitly informing students of how the activity connects to critical thinking and metacognition, maximizing students' agency and choice over how the activity proceeds, and providing highly authentic, realistic problems (Yu & Zin, 2023).

PBL is powerful, but it's not the only way to get at critical thinking in class. Innovative faculty have come up with a wealth of other ideas geared to particular disciplines and settings. Engaging students in so-called counterfactual reasoning is one option. For example, a teacher might ask students in a psychology course to re-imagine the infamous 1971 [Stanford Prison Experiment](#) as if it followed contemporary ethical guidelines, with the goal of getting them to think deeply and critically about how the specific characteristics of that study elicited particular patterns of behavior among research participants (Innes & Morrison, 2024).

Other approaches emphasize the ability to notice and avoid various kinds of reasoning fallacies and misinformation. "Prebunking" involves carefully controlled exposure to unfounded or conspiratorial claims, with the goal of building resistance ahead of time. One group of enterprising researchers even turned this technique into a full-fledged online game that helped participants effectively spot and critique misinformation connected to the COVID-19 pandemic (Basol et al., 2021).

One of my favorite ideas of all has involved something termed "inductive" teaching. In contrast to the conventional approach of first presenting abstract reasoning principles to students, inductive teaching involves having students start with specific examples of flawed reasoning, asking them to state what kinds of flawed reasoning they see in the examples. One research team asked participants to label

a series of scenarios—a psychic's prediction seemingly coming true, a poorly designed research study conflating correlation and causation, claims that a camera has picked up images of ghosts—for not only whether they might involve some sort of fallacious reasoning but also what *kind* of fallacy each scenario specifically represented. As it turned out, this example-based practice not only raised scores on a standard test of critical thinking but also raised participants' confidence in themselves as capable critical thinkers (Motz et al., 2022).

Faculty have many choices to make as they seek to enhance their approaches to critical thinking—a fact that can be overwhelming at first. But guiding principles can be found in what the most effective options have in common: engaging students in deliberate, effortful, and substantive practice that aligns closely to what critical thinking looks like in a given discipline. Any teaching practice that puts that principle into practice is, if not guaranteed, likely to help shrink that troubling gap between what we all seem to want and what students are actually getting.

References

Arum, R., & Roksa, J. (2011). *Academically adrift: Limited learning on college campuses*. University of Chicago Press.

Basol, M., Roozenbeek, J., Berriche, M., Uenal, F., McClanahan, W. P., & Linden, S. van der. (2021). Towards psychological herd immunity: Cross-cultural evidence for two prebunking interventions against COVID-19 misinformation. *Big Data and Society*, 8(1). <https://doi.org/10.1177/20539517211013868>

Dumitru, D., & Halpern, D. F. (2023). Critical thinking: Creating job-proof skills for the future of work. *Journal of Intelligence*, 11(10). <https://doi.org/10.3390/jintelligence11100194>

Dwyer, C.P. (2017). *Critical thinking: Conceptual perspectives and practical guidelines*. Cambridge University Press.

Dwyer, C. P. (2023). An evaluative review of barriers to critical thinking in educational and real-world settings. *Journal of Intelligence*, 11(6). <https://doi.org/10.3390/jintelligence11060105>

Halpern, D. F. (1998). Teaching critical thinking for transfer across domains: Disposition, skills, structure training, and metacognitive monitoring. *American Psychologist*, 53(4), 449–455. <https://doi.org/10.1037/0003-066X.53.4.449>

Huber, C. R., & Kuncel, N. R. (2016). Does college teach critical thinking? A meta-analysis. *Review of Educational Research*, 86(2), 431–468. <https://doi.org/10.3102/0034654315605917>

Innes, J. M., & Morrison, B. W. (2024). Teaching psychology that does not exist: Counterfactuals as catalysts for critical thinking in psychology education. *Scholarship of Teaching and Learning in Psychology*. Advance online publication. <https://doi.org/10.1037/stl0000402>

Miller, C. J., & Metz, M. J. (2014). A comparison of professional-level faculty and student perceptions of active learning: Its current use, effectiveness, and barriers. *Advances In Physiology Education*, 38(3), 246–252. <https://doi.org/10.1152/advan.00014.2014>

Miller, M. D. (2014). *Minds online: Teaching effectively with technology*. Harvard University Press.

Miller, M. D. (2025, February 24). Cognitive offloading, cognitive abilities, and AI. *R3 Newsletter* [Substack]. <https://michellemillerphd.substack.com/p/cognitive-offloading-cognitive-abilities>

Motz, B. A., Fyfe, E. R., & Guba, T. P. (2022). Learning to call bullsh*t via induction: Categorization training improves critical thinking performance. *Journal of Applied Research in Memory and Cognition*, 12(3), 310–324. <https://doi.org/10.1037/maco0000053>

Niu, L., Behar-horenstein, L. S., & Garvan, C. W. (2013). Do instructional interventions influence college students' critical thinking skills? A meta-analysis. *Educational Research Review*, 9, 114–128. <https://doi.org/10.1016/j.edurev.2012.12.002>

Pearson. (2018). *Critical thinking: A summary of employers' views* [Executive summary]. <https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/efficacy-and-research/skills-for-today/Critical-Thinking-ExecSum-Employers.pdf>

Tiruneh, D. T., Verburgh, A., & Elen, J. (2014). Effectiveness of critical thinking instruction in higher education: A systematic review of intervention studies. *Higher Education Studies*, 4(1). <https://doi.org/10.5539/hes.v4n1p1>

Willingham, D. T. (2008). Critical thinking: Why is it so hard to teach? *Arts Education Policy Review*, 109(4), 21–32. <https://doi.org/10.3200/AEPR.109.4.21-32>

Yu, L., & Zin, Z. (2023). The critical thinking-oriented adaptations of problem-based learning models: A systematic review. *Frontiers in Education*, 8, 1139987. <https://doi.org/10.3389/feduc.2023.1139987>

Suggested Reading

Halpern, D. F. (1999). Teaching for critical thinking: Helping college students develop the skills and dispositions of a critical thinker. *New Directions for Teaching and Learning*, 80, 69–74. <https://doi.org/10.1002/tl.8005>

Holmes, N. G., Wieman, C. E., & Bonn, D. A. (2015). Teaching critical thinking. *Proceedings of the National Academy of Sciences, USA*, 112(36), 11199–11204. <https://doi.org/10.1073/pnas.1505329112>

Lee, N. Y., Wang, Z., & Lim, B. (2024). The development of critical thinking: What university students have to say. *Teaching in Higher Education*, 29(1), 286–299. <https://doi.org/10.1080/13562517.2021.1973412>

Lv, X., Jia, Y., Brinthaup, T. M., & Ren, X. (2024). Event-related potentials of belief-bias reasoning predict critical thinking. *Journal of Educational Psychology*, 116(6), 982–996. <https://doi.org/10.1037/edu0000845>

Macpherson, R., & Stanovich, K. E. (2007). Cognitive ability, thinking dispositions, and instructional set as predictors of critical thinking. *Learning and Individual Differences*, 17(2), 115–127. <https://doi.org/10.1016/j.lindif.2007.05.003>

The DEI Debacle: How University Presidents Are Repeating Their Past Mistakes

Nimisha Barton

Following the infamous “*Dear Colleague*” letter sent out by the Department of Education in February 2025, colleges and universities have rushed to shutter diversity, equity, and inclusion (DEI) offices in the hopes of avoiding the fate of so many other institutions—namely, incurring the wrath of the Trump administration that views such programs as giving an unfair advantage to people of color and contributing to “*the disenfranchisement of white men.*” As of this writing, over 392 colleges and universities across 46 states including the District of Columbia have dismantled their DEI offices. More are sure to follow.

For many, the present predicament of DEI in higher education seems uniquely hopeless, but in fact, we’ve been here before. Just like DEI hires following the 2020 George Floyd protests, 1960s- and ’70s-era diversity practitioners were handed a vague mandate to engage in sweeping institutional reforms. And, like today’s most recent DEI hires (and, even more recently, fires), diversity practitioners watched dumbstruck when university leaders caved to both federal and public pressure just a few short years later. The way university leaders fumbled that particular moment offers important lessons for us in the here and now. Above all, the episode serves as a timely reminder of the utter predictability of what education scholars today increasingly term whitelash—or white resistance following moments of great social progress—and the wrongheadedness of capitulation in times of crisis.

Backlash has long been the quintessential American response to expansions in access to higher education.

Backlash has long been the quintessential American response to expansions in access to higher education. For much of this nation's history, college going was the unique preserve of wealthy, white, Protestant men. It was only in the late 19th century that the status quo was disrupted, first by the entry of wealthy and middle-class white American women and later with the enrollment of Jewish students, especially those of Eastern European immigrant backgrounds. With the arrival of Black students on college campuses, backlash took on explicitly racial dimensions, morphing into whitelash.

Everything changed with the civil rights movement. As students of color moved to dismantle structural racism in every part of American society, they set their sights on the next frontier: historically-white colleges and universities (HWCUs). Black students especially were at the forefront of the movement for racial equality at HWCUs. Forging strong multiracial alliances among fellow students, staff, and faculty, they compelled white senior leaders to confront and dismantle institutional racism.

As protests roiled campuses across the nation, students secured some long-lasting wins, including affirmative action to diversify the undergraduate student body. Colleges and universities also conceded to other student demands, such as the establishment of interdisciplinary programs like ethnic studies, African American studies, and women's studies as well as offices of minority affairs, urban affairs, and Black student unions—the forerunners of today's DEI offices and racial affinity centers.

Various DEI staff swept into office thanks to successful student protest movements secured several victories in those early years. Most significantly, they spearheaded institutional efforts to expand outreach and recruitment of students of color and to create support programming to ensure their success in unfamiliar institutions that operated largely according to unwritten norms and codes. But that progress was cut short by the extraordinary backlash symbolized by Reagan's America.

In line with a fervent faith in doctrinaire free-market beliefs on both sides of the Atlantic, and in response to the specter of a nation run by radical leftists who believed in racial equality, the Reagan administration rescinded federal support of higher education. Though white students repeatedly brought legal challenges against affirmative action in higher education throughout the seventies, it was

medical student Allan Bakke who shifted the status quo on affirmative action. In 1978, the Supreme Court's infamous *Bakke ruling* represented a sea change in American culture that had come to view policies like affirmative action as tantamount to reverse discrimination. It was a key moment when the fight for social justice was "derailed by diversity."

In the wake of the *Bakke* decision and the rightward lurch in US politics in the 1980s, senior leaders in higher education rolled back what today we would call DEI initiatives, claiming that they were discriminatory against white students. Some dissolved ethnic studies departments; others liquidated racial affinity centers and eliminated programming for students of color. Along the way, they created a hostile climate for practitioners who could only pursue their work so long as they used more "neutral" and "palatable" terms to discuss "difference." By the 1990s, the slippage toward power-blind "diversity" language became a way to manage so-called difference, not to fight institutional racism.

Defunding minority affairs offices and racial affinity centers was also the outcome of decades of complaints from white students and parents who, as early as the '60s, declared that special services for minority students constituted "special treatment." Leaders of early DEI offices described what it felt like to be caught in the crossfire of that era's culture wars. One administrator at a large public research university in the '80s recalled, "A wave of antipathy landed at my doorstep." She wasn't alone.

There is an important lesson here: From Occupy Wall Street and the #MeToo movement to Black Lives Matter and the George Floyd protests, a resurgence of social justice activism throughout the 2010s inspired student protests over the past 15 years in ways that harkened back to the civil rights era. When we see the 2010s as a time of great social progress, the current onslaught against all things DEI is far less surprising; indeed, it is wholly predictable.

Unfortunately, the majority of today's university leaders have taken the wrong lessons from the past. If their predecessors created the inhospitable conditions that watered down the struggle against institutional racism and tamed it with benign diversity and inclusion rhetoric, today's senior leaders are going a step further, eradicating DEI from their institutions altogether in ways that will hobble equity and justice work for years to come.

To be sure, higher ed leaders face an uphill battle. From withholding federal funding and placing departments under conservatorship to targeting international scholars for their scholarship and social activism, the Trump administration has made it clear that it is out to play hardball. But more is at stake than just the future of higher education. From Hungary to India, modern authoritarian regimes attack institutions of higher education as part of their larger agenda to undermine democracy. As various segments of our civil society bow to the pressure of the Trump administration, universities represent one of the last institutions of civil society capable of standing up against the hollowing out of American democracy as we know it. The question is: Will they rise to the occasion or will they back down yet again? The future of higher education—indeed, the future of us all—depends on what they do next.

magnapubs.com/courses

Online courses for educators, by educators.

Learn practical strategies on a wide variety of topics to improve your teaching experience.

MAGNA

Teaching for Transformation: Strategies to Help Students See the World Differently

Michelle Blank Rentz

If we named the purposes of college, chief among them would be ideas surrounding the transfer of knowledge and content delivery. This is accurate but incomplete. A more exhaustive list of college goals would also include growth and transformation. Change happens all around, and within, us constantly. Some shifts we notice, like the subtle wrinkles around our eyes or the changing colors of the leaves, while others are less perceptible but can result in enormous impact. Since change is inevitable—we continually develop and adapt—transformation becomes one of the main purposes of college, where we challenge our students' existing perspectives so they might mature into the next stage of adulthood. Rather than leaving this change to chance, we must move beyond content delivery to intentionally guide students through transformative learning experiences that challenge their schemas and shape new ways of thinking, acting, and becoming.

When we encounter new information, our schemas must adapt in some way, in turn informing our thinking, acting, and becoming.

To better understand how transformation actually happens, we first need a basic understanding of schemas since transformation is based on schematic shifts. Basically, brains are like giant file cabinets filled with folders (schemas) that hold all our experiences. These folders are each labeled, connected to other folders, and grow both in scope and in number as we have new experiences (Meylani, 2024). For example, sometime in childhood, we saw a fluffy animal, and a more knowledgeable other (MKO), like a parent or caregiver, told us that the creature was a cat. Then when we saw a dog, our brains likely tried to fit the dog into the cat folder

but, when the MKO corrected us, made a new, connected folder labeled “dog.” Without the MKO’s intervention, change would have happened—adding the dog to the cat folder—but it would have resulted in faulty schema. When we encounter new information, our schemas must adapt in some way, in turn informing our thinking, acting, and becoming. Of course, our students are working with concepts a little more complex than the basic categorization of animals, but the process is the same.

Now that we have schemas fresh in our minds, we can build on the above and examine the transformative learning framework as one way to guide these schematic changes rather than leaving them to chance. Jack Mezirow established the theory of transformative learning (Mezirow & Taylor, 2009). His original framework has 10 stages, but that seemed a bit overwhelming to try to implement, so I condensed those 10 to four stages.

1. **Disorienting dilemma:** A disorienting dilemma occurs when new information challenges our existing schemas, our current ways of thinking. These dilemmas can be huge, like a death in the family, or they can be small, like seeing a person out of context. As an example, a student comes to college with a schema that equates being a “good student” with receiving A grades but then does not achieve As in their courses. This student’s new reality will lead to some sort of change in thinking, acting, or becoming or a combination thereof.
2. **Critical reflection:** In this stage, the disorienting dilemma leads us to analyze, question, and consider different perspectives that may challenge our beliefs, assumptions, and values. This is hard work and is essential for transformation. As faculty, we are students’ MKOs, and we can guide this critical reflection with questions designed to slow students down and lead them toward analysis, helping them make sense of challenging new information. Looking back to our “good student,” we might ask what led them to connect As to success or what they are learning that will move them closer to their goals. These questions promote processing and reevaluation of their existing schema. In this stage, we may also provide students with resources to facilitate their exploration of other perspectives.

3. **Development or adjustment:** After critical reflection, the schema will be developed or adjusted. When our schemas are challenged, the disorienting dilemma of stage 1, one of three things usually occurs:
 - a. We assimilate the new information into our existing schemas. For example, our “good student” may expand their definition to allow for lower grades.
 - b. We adapt by creating a new, but connected, folder—for instance, one labeled “good college student” that acknowledges that college expectations may require a different relationship between success and grades.
 - c. We reject the new information as inaccurate or irrelevant and make no changes to our thinking, acting, or becoming, but this outcome is less likely when the guided reflection of stage 2 is in place.
4. **Integration:** Finally, the transformed schema prompts new ways of thinking, acting, and becoming. This may happen quickly or over the semester, years, or even a lifetime. Unfortunately, rejection of the new information can also integrate and solidify faulty or limited schemas and thus more deeply entrench unhealthy or immature ways of thinking, acting, and becoming. This is why applying the transformative learning framework is so important.

You have likely been using aspects of the transformative learning framework throughout your career, but I invite you to use it with purpose and intentionality. To start, consider your own schema surrounding your role as an instructor and allow me to introduce a statement that might lead to a disorienting dilemma: “You’re not merely a content deliverer but a guide, facilitator, and leader of transformative learning experiences.” To address this new information or perspective, walk through the transformative learning framework, perhaps with a mentor or friend who can serve as your MKO and sounding board. Once you have spent some time with your faculty schema, you are more prepared to guide your students. Consider examining the disorienting dilemmas that the content, policies, and processes in your courses might present for your students. How can you be ready to guide them in critical reflection? What questions might you ask? What resources could you provide? As you move your students through the stages of transformative learning, what changes in their schemas do you expect? Can you build in opportunities for

them to act on the integration of transformed schemas? For help with implementing these ideas or to learn more, feel free to look at my [conference presentation slide deck](#) or reach out via email (mblank@goshen.edu).

References

Meylani, R. (2024). Innovations with schema theory: Modern implications for learning, memory, and academic achievement. *International Journal for Multidisciplinary Research*, 6(1). <https://doi.org/10.36948/ijfmr.2024.v06i01.13785>

Mezirow, J., & Taylor, E. W. (2009). *Transformative learning in practice: Insights from community, workplace, and higher education* (1st ed.). Jossey-Bass.

Start your *Teaching Professor* subscription for as little as \$19 per month.

Subscribers of *The Teaching Professor* rave about what they dive into each week. It's no surprise because this award-winning publication is depended on by educators worldwide.

TeachingProfessor.com

Cocreating Agile Academic Integrity Guiding Principles for AI with Equity

Hoda Mostafa, Maha Bali, and Yasser Atef Tamer

This work is part of a larger project to integrate cocreation as an integral part of designing and developing guidelines, policies, and frameworks in the educational development, teaching, and learning space at the Center for Learning and Teaching at the American University in Cairo. Dr. Mostafa presented on this work at the 2025 Teaching Professor Conference.

When generative AI (GenAI) appeared on the higher education landscape, the general reaction ranged from enthusiasm and curiosity to grave concern around how a technology that was not designed for education would impact our lives as educators and the lives of learners. The uncertainty educators found themselves navigating led to initial bans on use of AI, policies such as a traffic light approach to GenAI use, and other forms of guidance often provided by peers or institutions. A consensus in many institutions today is that faculty should be not only deciding but also leading the way forward on GenAI use policies in their classrooms. While this approach may help preserve the core values of academic integrity, it also invites faculty to reimagine learning and teaching in an ecosystem where we can assume that most if not all students use GenAI, are curious about it, and need guidelines for how and when to use it ethically and appropriately.

Guidelines for our students around AI and academic integrity are essential regardless of whether our institutions require or encourage them, and transparency around these guidelines can save us from unnecessary confusion about what counts as an “academic violation” in our courses.

Institutions or faculty or departments may develop guidelines without questioning the social justice implications of policies or which groups of learners may be disadvantaged by a change in policy or a new approach to assessment meant to respond to the existence of GenAI. Moreover, the frequent changes of the AI landscape and slowness of legislation on a national level means that any guidelines we develop will likely need frequent updates unless we develop them in an agile manner that allows for responsiveness, flexibility, and rapid review from the outset.

We tested an approach to a codesign (involving students, faculty, and other university staff) process of cocreating ethical yet agile guidelines for AI use while maintaining equity in our pedagogies in a “postplagiarism era” (Eaton, 2023). This was conducted by running a global workshop and creating structured conversations in groups in response to a key challenge statement: “How Might We... collaboratively craft agile, inclusive guidelines to AI use in our classrooms?” We are synthesizing our insights into a constellation of features for agile and inclusive policies and guidelines that mattered most to that group of participants.

Codesign is at its core a human-centered, cocreation approach that provides opportunities for critical reflection, insight building, and reflection. Others can replicate what we did with a global audience in July 2024 and explore diverse stakeholder perspectives and generate ideas through cocreation. At our center we have used a codesign approach in the past to explore challenges around student engagement and academic integrity.

Here's a quick five-step guide to help you run your own cocreation session:

1. Define your challenge. Choose a problem that people care about and one that impacts multiple stakeholders. We chose to pose a challenge that highlighted agility (vital for a dynamic fast moving challenge like GenAI and academic integrity) and equity, ensuring all voices are heard and integrated into a policy or guidelines. Set the stage with an understanding of AI literacies and the importance of understanding differences as well as biases in GenAI use.

Our challenge statement was: “How Might We... collaboratively craft agile, inclusive guidelines to AI use in our classrooms?” You can create your own for a variety of challenges.

2. Understand your participants. A good way to do that is to send a short poll ahead of time. For our workshop, we asked questions around participants' backgrounds, affiliations, level of familiarity with GenAI, general attitudes toward GenAI, and their level of agreement with statements such as "GenAI can increase student creativity" and "GenAI can reduce student/teacher workload." Sharing survey questions that help you get to know your audience before the codesign session is essential as you prepare to partner with your participants in a cocreation exercise.
3. Provide input during the workshop that introduces the participants to the context. In our workshop, for example, we discussed metaphors around the use of AI, critical AI literacy, and the importance of cocreating guidelines that are representative and inclusive of all stakeholders; we also shared some perspectives around why students may resort to unauthorized use of GenAI. This was not one-way traffic but interactive, with continuous input from participants.
4. Design your workshop intentionally. We were inspired to use a liberating structure called Conversation Café (Liberating Structures, n.d.). Divide participants into small groups of students and teachers; in our case educational developers from our center participated as well. The format of the Conversation Café helps ensure that everyone's voice is heard through timed turn-taking and rounds with different tasks, and it helps participants engage in guided and deeper conversations with less debating, more listening, and a common goal. Participants document their discussion on a worksheet, flip chart, or, in online workshops, slide deck or collaboration board. Participants spend time at the end of the workshop sharing the key facets of a codesigned policy or guideline. Encourage participants to focus on the critical "functions" of the guideline or policy while sharing. In our case, we wanted participants to focus on features that allow for agility and ensure equity. If your question has two dimensions (in our case, agility and inclusiveness), you can break the activity into two rounds so participants can focus on one aspect in each round and then share some of what they discussed with the wider group. Decide ahead of time the kind of diversity you need in each small group and use the demographic information from the pre-survey to divide people up appropriately. In our case, we made sure we had a mix of students and educators from different institutions.

5. After the workshop is over, or at the end of it if you have time, look at the data collected as participants took notes. Unpack your workshop insights, cluster them under themes, and synthesize them into one or more versions of a prototype. Solicit feedback from other stakeholders, bring in multiple perspectives, and test your prototype idea in your classroom.

Be open to change once you pressure-test your policy or guidelines. Acknowledge that cocreation will yield a product that in all likelihood is better than something you write on your own. Trust the process and experiment with cocreation.

Upholding academic integrity in the time of GenAI is a complex, wicked problem. Faculty want to preserve the integrity of assessment of learning and achievement of outcomes, while students want to explore new tools and sometimes take shortcuts due to time constraints and other reasons. We also need to consider our responsibility in preparing our students for the workforce by integrating AI tools responsibly and building critical AI literacy skills while also ensuring that our educational environment remains inclusive, which adds another layer of complexity.

By bringing students, faculty and other stakeholders from your institution into a codesign workshop (or series of workshops), you considerably increase the likelihood of developing guidelines that work well for them, reflect an equitable approach, and yet are agile enough to respond to the rapid shifts in the field of AI. Using this approach integrates diverse perspectives through the five-step method.

Codesign generates insights and user-centric directions for creating guidelines and policies that are structured in a more participatory and equitable manner than, for example, a purely faculty-driven or top-down institutional guide. Students are able to contribute valuable ideas and can genuinely change their minds after they participate in a codesign session with faculty members and gain a better understanding about the “why” behind a policy. In a reciprocal manner, codesign brings faculty closer to seeing the student perspective and exposes them to ideas that can create more agile, inclusive, and realistic guidelines for the use of GenAI while preserving academic integrity. Creating safe spaces where these conversations can happen is essential, and this kind of workshop structure helps enable that kind of environment and is conducive to constructive discussions that can lead to action.

References

Bali, M. (2024, February 26). *Where are the crescents in AI?* LSE Higher Education Blog. <https://blogs.lse.ac.uk/highereducation/2024/02/26/where-are-the-crescents-in-ai>

Eaton, S.E. (2023). Postplagiarism: Transdisciplinary ethics and integrity in the age of artificial intelligence and neurotechnology. *International Journal for Education Integrity*, 19, Article 23. <https://doi.org/10.1007/s40979-023-00144-1>

Liberating Structures. (n.d.). *Conversation café*. <https://www.liberatingstructures.com/17-conversation-cafe>

Rethinking the Flipped Classroom: Beyond Content Delivery

Rachel Glazener

The flipped classroom has become something of a buzzword in higher education, often praised as a silver bullet for engagement and learning. Walk through any teaching conference, and you'll find sessions promising that simply moving content delivery online will transform your courses. But having experimented with flipped approaches in my high-volume organic chemistry courses, I can attest that the technique alone isn't enough.

Before flipping, I taught in a traditional manner for organic chemistry: dense, fast-paced lectures where students were writing frantically and trying to absorb

complex concepts in real time. I referred to this as the fire hose method of lecturing and receiving content. Students constantly asked for more in-class practice, and I tried to accommodate this request, but what they didn't understand was that it was impossible to both absorb the new content and immediately pivot to problem-solving. There simply wasn't enough time in class.

Successful flipping requires more than rearranging content and class structure changes. It demands that students develop genuine ownership of their learning process.

Homework only compounded the problem. Students would start problems only to quit out of frustration, unable to fully comprehend the complex material without support and a study session with no end time in sight. The time management burden was crushing both their confidence and their grades.

My early attempts at flipping didn't solve the problem. Engagement increased but something was still missing. Class often devolved into show and tell, with me demonstrating while students watched, recreating the dynamic I was trying to change.

The breakthrough came when I realized that successful flipping requires more than rearranging content and class structure changes. It demands that students develop genuine ownership of their learning process. This ownership emerged through two supporting strategies, explicit metacognitive instruction and structured note-taking with reflection in a learning journal. Together, these approaches create a system where students not only encounter content differently but also fundamentally change how they approach learning.

The professor's learning curve

What surprised me most was how challenging the shift from "sage on the stage" to "guide on the side" proved to be. It sounds simple in theory, but the reality included changes in how I approached teaching and my becoming more flexible with how I spent class time. I had to physically leave the comfort of the front podium and move among students, fielding unpredictable questions and managing multiple simultaneous conversations. Students in this format ask more questions and better questions because they've had time to process the complex content before class. This new classroom management style felt foreign, out of my full control, and initially uncomfortable.

Most importantly, I learned I couldn't cave when students arrived unprepared. Setting expectations from day one proved crucial. This is where learning journals became invaluable as my accountability tool; I could quickly see who had engaged with the videos by glancing briefly at their notes as I moved around the classroom.

The buy-in challenge

The most time-intensive aspect of this approach happens before any content is delivered: securing student buy-in. Doing so requires abandoning the traditional "this is how I've always done it" mentality in favor of explicit transparency about pedagogical choices.

My first meeting with the class became entirely about establishing a community and setting a tone for collaboration. I begin by expressing how the science of learning supports the techniques we'll be using throughout the semester with flipped instruction, structured note-taking, and reflection. I break students into groups immediately, have them introduce themselves, and share details about myself. Creating that human connection is essential for this format to work. Students need to see both their professor and classmates as accessible resources, not distant authorities.

I educate them about how note-taking isn't a punishment but a way to strengthen memory and how metacognition doesn't happen naturally for most students but is a chance to strengthen their own self-awareness as learners. I am not just teaching chemistry content anymore; I am teaching students how to learn chemistry too.

The investment pays off. Students consistently comment that it is rare that a professor of theirs ever explains their pedagogical choices. This shifts the dynamic from the requirements for the course, especially those that are low in point value towards the grade, being arbitrary to purposeful and helpful to their career in college.

Teaching students how to learn

Drawing from Saundra McGuire's transformative work in *Teach Students How to Learn* (2015), I began dedicating the first class session not to organic chemistry but to metacognitive and note-taking instruction. We explore Bloom's taxonomy, the difference between recognition and recall, how to use the study cycle, and why "understanding" in class doesn't guarantee success on problem sets.

Start your first class with a simple demonstration: Show students a worked problem, then immediately ask them to solve a similar one independently. Most will struggle, creating the perfect teachable moment about the difference between recognition and recall. Follow with brief instruction on study strategies that promote deeper learning: self-testing instead of rereading, explaining concepts aloud to clarify topics rather than silently reviewing, and identifying specific confusion points in place of making vague "I don't get it" statements.

To reinforce this habit, I use quick pre- and in-class metacognitive prompts. For example, "What concept from today's video will likely challenge you most?" or "Identify one point where you moved from understanding to confusion." These take

students under two minutes to complete but transform their awareness of their own learning gaps, making in- and post-class time more targeted and productive.

Structured notes and reflection

While metacognitive instruction provides the foundation, learning journals offer the ongoing structure students need to maintain ownership of their learning. Each week, students record their notes from the flipped videos, participate in practice problems, and reflect on their success with both the topics and their study plans.

It is important to design a learning journal assignment that focuses on the students' learning process rather than content mastery. An effective learning journal assignment should not significantly add to a student's or professor's workload. For students, the learning journal should hold them accountable for doing what has been asked of them in the class. I recommend collecting the journals electronically for grading. Rather than providing individual feedback, create a simple rubric with the feedback preassigned for each grade. This approach requires some time from the professor, especially in the first unit, but students quickly catch on to both the process and the benefits of writing a well-thought-out learning journal.

The synergistic effect

When metacognitive awareness, learning journals, and flipped classroom structure work together, something remarkable happens: Students become active owners of their learning rather than passive recipients of knowledge. The transformation goes beyond engagement; it fundamentally addresses student success and retention in content-heavy courses.

In my organic chemistry courses, D, F, and withdrawal rates dropped by more than half after I implemented these strategies. Student course evaluations consistently highlight improved time management and reduced study stress despite the course's notorious difficulty. As one student put it, "This format is so much more time efficient. I love it." Another reflected, "The flipped class was extremely beneficial to me. I like having problems worked out and explained in front of me and where I can actively participate rather than just struggling on my own."

The transformation solved the timing problems that had plagued my previous approaches. Students now absorb complex lecture material by watching videos at their

own pace, pausing and rewinding as needed. Class time becomes dedicated practice with direct support from me and their peers in collaborative groups. No more fire hose method of teaching while students frantically take notes as they simultaneously try to solve problems. No more open-ended homework sessions that end in frustration.

As one student noted: “I like watching the videos at my own pace, much better than the lecturer just powering through it in class. Lots of time to ask questions now in class.” This captures the fundamental shift: from time scarcity to time clarity, from isolated struggle to supported practice. They can identify their confusion points during videos, then address them immediately during class through targeted practice of the complex material. The learning journals combined with metacognitive reflection further help them calibrate their readiness for exams and increase their collective success in the course.

Practical pathways for faculty

For faculty considering this approach, the key is to start small. Begin with low-investment, high-impact strategies: adding a metacognitive check-in at the start of class or collect brief reflections as a weekly exit ticket. These quick wins build momentum for both students and instructors.

Over time, layer in more advanced elements: structured group work, active learning activities, targeted in-class problem-solving, and eventually pre-class content creation. When you phase in change, the flipped model becomes approachable rather than overwhelming.

Ultimately, success lies in transparency and flexibility. Students must understand not only what they are learning but also how and why the course is structured the way it is. Faculty must be willing to leave the podium, embrace flexibility, and cultivate reflection. The result is a classroom where students become active, self-aware learners and where the flip is not just structural but transformational.

Reference

McGuire, S. Y. (2015). *Teach students how to learn: Strategies you can incorporate into any course to improve student metacognition, study skills, and motivation*. Stylus Publishing.

Timeless Teaching, Modern Challenges: Ensuring Learning in an AI World

Jeremy A. Rentz

“How do we know students are earning the degrees we confer?”

That question, which a board member at my university recently posed, is deceptively simple, yet it strikes at the heart of our work as educators. And in an era where generative AI tools are freely available and increasingly capable, it’s a question we can’t afford to dodge.

Long before AI complicated things, James Lang’s *Cheating Lessons* (2013) identified conditions that led students to cheat. His insights remain vital today, helping us design assessments that reduce opportunities for dishonesty.

I’m not a fan of the antagonistic “catch the cheater” mindset. I prefer a supportive approach where mutual trust fuels learning.

Students are more likely to cheat when the following course conditions apply:

- **Stakes are too high**—If one test or project can make or break their grade, desperation can lead to shortcuts.
- **They don’t see the “why”**—Without understanding how an assessment connects to their goals or future, effort drops, and learning suffers.
- **Confidence is low**—Feeling unprepared or overwhelmed increases panic and the temptation to cheat.
- **Grades matter more than growth**—When courses emphasize points over learning, cheating becomes a way to “play the game.”

One of the best things Lang does is highlight where we can make changes to reduce cheating. That feels like a breath of fresh air; I'm not a fan of the antagonistic "catch the cheater" mindset. I prefer a supportive approach where mutual trust fuels learning. And as the conductors of our classrooms, we can create positive changes for our students.

Seated, in-class, paper-and-pencil exams

One of the strongest ways to ensure student learning is through seated, in-class, paper-and-pencil exams. The classroom is the only space where instructors have complete control over student resources. So, when it's time to assess what students truly know and can do, the proctored classroom void of technology provides the clearest picture. I'm not advocating for surveillance. Instead, I advocate for designing assessments in a setting that emphasizes thinking, not access to technology.

I don't just give one or two high-stakes exams. I schedule four or five throughout the semester to support and assess student learning (Brown et al., 2014). This approach addresses Lang's insight about high-stakes driving cheating by lowering pressure and giving students multiple chances to show what they know. As a bonus, numerous exams let me assess a broader range of material and skills. I scaffold classes with a lot of student practice to ensure that students are prepared when exam day arrives.

Reframing homework

Frequent, in-class exams work best when students feel prepared and confident. To build that foundation, we must rethink how we structure and weight course components, particularly homework. Because students often complete homework outside class, it becomes a prime target for unauthorized AI use. When out-of-class work counts for 30 percent or more of a course grade, it can encourage students to inflate their grades without truly mastering the material.

To address this issue, I intentionally cap homework's contribution to the final grade at around 10 to 15 percent. This keeps homework valuable as practice and reinforcement but signals to students that it's not the main event. Instead, the focus shifts to preparing for those in-class exams, where they must think independently.

Transparency plays a crucial role here. Many students are used to passing classes by accumulating homework points without deep engagement. By clearly explaining the purpose of homework and showing how it supports students' growth, we can reset their mindset. Homework becomes a tool for growth, not a shortcut or grade padding.

Class activities that show the value of work

Essential to scaffolding are frequent, low-stakes, in-class activities. I may or may not grade these exercises, but they reinforce that showing up, thinking, and engaging matters. They give students valuable practice with the kinds of thinking exams require and provide ongoing formative feedback that helps both students and instructors gauge understanding. For faculty concerned that students might not engage unless graded, in-class group assignments are a practical middle ground. Remember, students are accustomed to chasing points, so use that to your advantage here if you need to.

Exam review days

If I were to highlight just one scaffolding strategy that has transformed my students' learning, it would be exam review days. I used to hold review sessions at night, and mostly only the A and B students attended. Now, every student has access by integrating these sessions directly into class time.

These sessions go beyond a simple review. Instead, they are formative learning experiences where students work through practice questions I've written in exam style. No notes or tech are allowed, just their brains and those of their peers. If a question is challenging, students mark it for further study, and if they breeze through it, they gain confidence. This approach helps students self-assess and take ownership of their preparation. It also models the kind of effort needed for exam day.

Back to the classroom

While this article has focused primarily on exams, there are many other assessments you can bring back into the classroom environment, where you have complete control. I particularly like individual presentations, impromptu explanations, written reflections, hands-on demonstrations, and case study analyses that encourage active, purposeful engagement. Simply taking away computers and returning to

paper-based tests can make a significant difference for some instructors. The key is to create assessment opportunities that reduce reliance on unauthorized resources and promote genuine student learning in spaces you manage.

Harnessing performance tasks

If exams aren't a fit for your course or you can't bring specific assessments back into the classroom, designing strong performance tasks is critical. While performance tasks are celebrated for their authenticity and real-world relevance, many AI tools can complete these assignments, sometimes very well.

Fortunately, not all performance tasks are created equal when it comes to AI. Some, like presentations, debates, mock scenarios, and videos, require students to actively perform, respond, or create in ways that are much harder for AI to simulate. Others, like traditional papers, reports, and analysis projects, are increasingly vulnerable to AI completion.

Whatever performance tasks you choose, the following two strategies can make them more resistant to AI misuse. Combined, these approaches create a stronger, more authentic assessment experience that encourages genuine student effort and learning.

Starting with the why

The first strategy for designing AI-resistant performance tasks is to *start with the why*. Students who don't understand *why* a project matters are far more likely to hand it off to AI. But when the purpose is clear, personal, and relevant, students are more motivated to engage.

Connecting assignments to students' personal goals, values, or needs is essential. When tasks align with deeper motivations, like growth, belonging, or self-actualization, students see their work as meaningful, not just another checkbox. Maslow's hierarchy reminds us that students crave purpose and meaning, not just completion. Students are less likely to outsource their learning if your assignments are designed to feel relevant, personal, and worthwhile.

Framing tasks around *future* success is another good strategy. When students recognize that an assignment helps them build skills needed for internships, jobs, or advanced courses, they're more likely to take ownership. This shifts the focus from

passing to preparing, which encourages genuine effort and discourages cheating.

Shifting grading to the process

We miss most of the learning if we grade only the final product. The real understanding happens during the process, including brainstorming, drafting, revising, experimenting, and sometimes even struggling. By grading these steps, we reward honest effort and reduce the temptation to outsource the final work to AI (Watson & Bowen, 2024).

This doesn't mean doubling your grading load. Instead, it's about strategically choosing key moments in the workflow that provide meaningful insight into student thinking. When students receive credit for showing up and doing the work, they are more likely to engage with purpose.

But it's not enough to simply ask students to submit drafts or reflections. We need to build the process into the assessment structure intentionally to show its relevance and purpose. When we thoughtfully design the process as scaffolding, they support student learning rather than serve as checkpoints for compliance. This approach helps students see the value in drafting, revising, and reflecting as essential parts of their growth.

While not a guarantee of originality, *handwritten work introduces friction that discourages AI use*. Students are less likely to copy and paste AI-generated content without a word processor or a document window. Handwriting can also encourage students to think more deeply and produce more personal responses, especially on reflection tasks and early drafts. It's a simple instructor choice that can nudge students toward doing the work themselves on process check-ins.

Empowering authentic learning

As educators, the question of how we can be confident that students are truly earning their degrees has never been more urgent. While AI presents challenges, it also allows us to rethink and strengthen assessments. Remember, the goal isn't to eliminate AI or catch every misuse, because that's impossible. Instead, it's to design assessments that get students to do the work and put the AI to the side.

References

Brown, P. C., Roediger, H. L., III, & McDaniel, M. A. (2014). *Make it stick: The science of successful learning*. Belknap Press.

Lang, J. M. (2013). *Cheating lessons: Learning from academic dishonesty*. Harvard University Press.

Watson, C. E., & Bowen, J. A. (2024). *Teaching with AI: A practical guide to a new era of human learning*. Johns Hopkins University Press.

FACULTY FOCUS

Thousands of teaching strategies
In-depth special reports
Exclusive deals!

Start your **Free** Subscription at
www.FacultyFocus.com

Helping Students Build a Life in the Age of AI

Jason Gulya

In January, Mary Ruskell (a high school senior) wrote about her experiences with generative AI for CNN. She writes eloquently about the existential questions she is facing as this technology makes it increasingly difficult to distinguish between reality and fiction. Generative AI has made mistrust her default setting. She asks a pivotal question: “When some of the main tools you use as a teenager to connect with real friends—memes and social media—are corrupted with artificiality, how do you make real connections?” Treating internet content with skepticism is not just an item on an AI literacy checklist. It’s a habitual behavior that has dramatic consequences for how she does (or does not) connect with others.

She asks a question that I think about a lot: “Can you really build a life when you don’t know what is real and what is fake, when you can never trust what you see, what you learn, or how the world works?” In my mind, helping students build lives is what education is for. As professors, we want our students to have the mindset and skills necessary to build a life—personally, financially, and socially.

Mary’s story captures the effects of the AI storm, which has been hitting schools (and society in general) hard for the last two-plus years. Seemingly every week, there’s a new update. Powerful individuals and companies release development after development, leaving it up to schools to sort out the consequences for education and the future of learning. Meanwhile, AI is becoming increasingly embedded in our surroundings. Smart wearables are quickly becoming a part of our everyday

Helping students build lives is what education is for. As professors, we want our students to have the mindset and skills necessary to build a life—personally, financially, and socially.

landscape. Students are already showing up to class wearing Meta AI glasses, which they can use to record lessons, get personalized help on assignments, and answer questions. They're also running course materials through large language models like ChatGPT and Claude, sometimes to get additional help and sometimes to simply do the work.

It's hard not to fall into a reactive mindset. It's hard not to throw our hands in the air, believe AI's advance is inevitable, and fall into paralysis. The sheer frequency of AI-related updates is enough to make anyone become passive. In fact, I have a suspicion that's part of the reason why powerful companies have rolled out AI this way.

But ultimately, we have a lot of agency. By "we," I mean not only instructors but anyone involved in creating and sustaining strong learning environments. Students, faculty, and administrators need to think about what kinds of classrooms we want to have and how those classrooms should align with the lives we want to build. We'll need to not only examine AI and other technologies surrounding us but also look beyond those technologies to focus on our students and what they need.

At the moment, I'm responding to generative AI in a couple of specific ways. First, I'm designing process-focused assignments, in which my students document their own work processes and reflect on them. As I see it, product-focused assessment is going to become untenable as it becomes more difficult to distinguish human-created products from what AI generates. Instead of requiring my students to write a paper and hand it in within a specific time frame, I ask them to create a process folio in which they document and reflect on their process as they go along. Students choose whether—and to what extent—AI is a part of that process. At the end of the course, my students and I can have a productive conversation about the process they created and implemented.

The point of my classes is not to test how well students can comply. It's to guide them as they make their own decisions, recognize the patterns in those decisions, and reflect on those decisions' importance. That's the only way I can see myself nudging them toward metacognition and self-awareness.

Second, I have also recognized that traditional grading is an obstacle—rather than a means—to achieving that goal. That's why I have implemented my own hybrid form of alternative grading. For example, in my Writing for Digital Media course, I use a complete/incomplete system for the first half of the semester. Rather than

rewarding students with points, I give a complete when students hit the objectives and an incomplete when I feel that students would really benefit from giving it another shot. Students who get an Incomplete can resubmit as many times as they want, with no penalty. The point is to deemphasize grades, while also destigmatizing the need to try again.

In a recent article, Emily Pitts Donahoe, who teaches writing and serves as an associate director of instructional support at the University of Mississippi, writes that “undoing damage around schooling is basically the one true goal of my first-year writing class, the thing I spend the most cognitive energy on.” She continues, “Students can’t learn anything, including how to write, until they adopt new mindsets about their education.” The rise of generative AI has been a powerful push for me to dive into alternative assessment, adapting to this new world by undoing some of the damage done by traditional grading and building a new mindset.

Very few of my decisions over the past two years—such as my focus on process-based assignments and my use of alternative assessment—are AI-centered. And that’s part of the point. As we shift to a proactive mindset, we need to think a little less about the technology itself and a little more about what we want our classes to look like.

Otherwise, powerful people and companies will gladly do that for us.

About the Contributors

Yasser Atef is a graduating senior at the American University in Cairo. He is a disability advocate, researcher, and facilitator. He interned with the Mid-Year Festival at Equity Unbound and received an Open Education Award in recognition of his open education practices through his work with Equity Unbound.

Maha Bali is professor of practice at the Center for Learning and Teaching at the American University in Cairo. She has a PhD in education from the University of Sheffield. She is cofounder of virtuallyconnecting.org and cofacilitator of Equity Unbound. She blogs at <https://blog.mahabali.me>.

Nimisha Barton is a lecturer at California State University, Long Beach and a DEI consultant in higher education. Her most recent book, *A Just Future: Getting from Diversity and Inclusion to Equity and Justice in Higher Education*, appeared with Cornell University Press in 2024. You can learn more about her at drnimishabarton.com.

Michelle Blank Rentz serves as the director of academic success at Goshen College, where she assists both faculty and students to improve learning. Michelle's professional passions include faculty development, disciplinary literacy, equity pedagogy, and the science of learning.

Rachel Glazener is an associate professor at Pellissippi State Community College in Knoxville, Tennessee, with over a decade of experience. Known for her versatility, she leads the organic chemistry program, champions high impact practices, and trains educators in technology-enhanced learning. Rachel's innovative approach empowers digitally native students to bridge their technological knowledge with essential study skills.

Jason Gulya is a professor of English and applied media at Berkeley College. He also works widely as an AI consultant and keynote speaker. Recently, he cowrote a book titled *Artificial Intelligence, Real Literacy* with Paul Matthews.

Michelle D. Miller is a professor of psychological sciences and President's Distinguished Teaching Fellow at Northern Arizona University.

Hoda Mostafa is professor of practice and director of the Center for Learning and Teaching at the American University in Cairo. She leads educational development, digital education, and strategic institutional initiatives across the university. A passionate design thinking facilitator, she spearheads innovation in teaching, experiential learning, faculty development, and institutional initiatives.

Jeremy A. Rentz is the Schantz Distinguished Professor of Environmental Engineering at Trine University. He supports student learning by using exceptional slides, building meaningful connections, and getting out of the way so students can do the meaningful work that learning requires. Outside the classroom, Jeremy leads faculty development efforts and helps educators rethink how we teach, assess, and adapt in the AI era.

Guaranteed to Enhance Your Faculty Development

More than **400 videos** with practical strategies to improve teaching and student engagement.

For more information visit
magnapubs.com/TPDL-basic

\$200 OFF your annual subscription with code: **BESTOFTP**